3.861 \(\int \frac{x^4}{\left (a+b x^4\right )^{3/2}} \, dx\)

Optimal. Leaf size=108 \[ \frac{\left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{4 \sqrt [4]{a} b^{5/4} \sqrt{a+b x^4}}-\frac{x}{2 b \sqrt{a+b x^4}} \]

[Out]

-x/(2*b*Sqrt[a + b*x^4]) + ((Sqrt[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a] +
Sqrt[b]*x^2)^2]*EllipticF[2*ArcTan[(b^(1/4)*x)/a^(1/4)], 1/2])/(4*a^(1/4)*b^(5/4
)*Sqrt[a + b*x^4])

_______________________________________________________________________________________

Rubi [A]  time = 0.0736015, antiderivative size = 108, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 15, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.133 \[ \frac{\left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{4 \sqrt [4]{a} b^{5/4} \sqrt{a+b x^4}}-\frac{x}{2 b \sqrt{a+b x^4}} \]

Antiderivative was successfully verified.

[In]  Int[x^4/(a + b*x^4)^(3/2),x]

[Out]

-x/(2*b*Sqrt[a + b*x^4]) + ((Sqrt[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a] +
Sqrt[b]*x^2)^2]*EllipticF[2*ArcTan[(b^(1/4)*x)/a^(1/4)], 1/2])/(4*a^(1/4)*b^(5/4
)*Sqrt[a + b*x^4])

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 7.60235, size = 94, normalized size = 0.87 \[ - \frac{x}{2 b \sqrt{a + b x^{4}}} + \frac{\sqrt{\frac{a + b x^{4}}{\left (\sqrt{a} + \sqrt{b} x^{2}\right )^{2}}} \left (\sqrt{a} + \sqrt{b} x^{2}\right ) F\left (2 \operatorname{atan}{\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}} \right )}\middle | \frac{1}{2}\right )}{4 \sqrt [4]{a} b^{\frac{5}{4}} \sqrt{a + b x^{4}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate(x**4/(b*x**4+a)**(3/2),x)

[Out]

-x/(2*b*sqrt(a + b*x**4)) + sqrt((a + b*x**4)/(sqrt(a) + sqrt(b)*x**2)**2)*(sqrt
(a) + sqrt(b)*x**2)*elliptic_f(2*atan(b**(1/4)*x/a**(1/4)), 1/2)/(4*a**(1/4)*b**
(5/4)*sqrt(a + b*x**4))

_______________________________________________________________________________________

Mathematica [C]  time = 0.124246, size = 102, normalized size = 0.94 \[ -\frac{i \sqrt{\frac{b x^4}{a}+1} F\left (\left .i \sinh ^{-1}\left (\sqrt{\frac{i \sqrt{b}}{\sqrt{a}}} x\right )\right |-1\right )+x \sqrt{\frac{i \sqrt{b}}{\sqrt{a}}}}{2 b \sqrt{\frac{i \sqrt{b}}{\sqrt{a}}} \sqrt{a+b x^4}} \]

Antiderivative was successfully verified.

[In]  Integrate[x^4/(a + b*x^4)^(3/2),x]

[Out]

-(Sqrt[(I*Sqrt[b])/Sqrt[a]]*x + I*Sqrt[1 + (b*x^4)/a]*EllipticF[I*ArcSinh[Sqrt[(
I*Sqrt[b])/Sqrt[a]]*x], -1])/(2*Sqrt[(I*Sqrt[b])/Sqrt[a]]*b*Sqrt[a + b*x^4])

_______________________________________________________________________________________

Maple [C]  time = 0.018, size = 94, normalized size = 0.9 \[ -{\frac{x}{2\,b}{\frac{1}{\sqrt{ \left ({x}^{4}+{\frac{a}{b}} \right ) b}}}}+{\frac{1}{2\,b}\sqrt{1-{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}\sqrt{1+{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}{\it EllipticF} \left ( x\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}},i \right ){\frac{1}{\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}}}}{\frac{1}{\sqrt{b{x}^{4}+a}}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int(x^4/(b*x^4+a)^(3/2),x)

[Out]

-1/2/b*x/((x^4+a/b)*b)^(1/2)+1/2/b/(I/a^(1/2)*b^(1/2))^(1/2)*(1-I/a^(1/2)*b^(1/2
)*x^2)^(1/2)*(1+I/a^(1/2)*b^(1/2)*x^2)^(1/2)/(b*x^4+a)^(1/2)*EllipticF(x*(I/a^(1
/2)*b^(1/2))^(1/2),I)

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{x^{4}}{{\left (b x^{4} + a\right )}^{\frac{3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x^4/(b*x^4 + a)^(3/2),x, algorithm="maxima")

[Out]

integrate(x^4/(b*x^4 + a)^(3/2), x)

_______________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \[{\rm integral}\left (\frac{x^{4}}{{\left (b x^{4} + a\right )}^{\frac{3}{2}}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x^4/(b*x^4 + a)^(3/2),x, algorithm="fricas")

[Out]

integral(x^4/(b*x^4 + a)^(3/2), x)

_______________________________________________________________________________________

Sympy [A]  time = 2.39853, size = 37, normalized size = 0.34 \[ \frac{x^{5} \Gamma \left (\frac{5}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} \frac{5}{4}, \frac{3}{2} \\ \frac{9}{4} \end{matrix}\middle |{\frac{b x^{4} e^{i \pi }}{a}} \right )}}{4 a^{\frac{3}{2}} \Gamma \left (\frac{9}{4}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x**4/(b*x**4+a)**(3/2),x)

[Out]

x**5*gamma(5/4)*hyper((5/4, 3/2), (9/4,), b*x**4*exp_polar(I*pi)/a)/(4*a**(3/2)*
gamma(9/4))

_______________________________________________________________________________________

GIAC/XCAS [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{x^{4}}{{\left (b x^{4} + a\right )}^{\frac{3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x^4/(b*x^4 + a)^(3/2),x, algorithm="giac")

[Out]

integrate(x^4/(b*x^4 + a)^(3/2), x)